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Abstract: Motivation: Medical image analysis involves 
tasks to assist physicians in qualitative and quantitative 
analysis of lesions or anatomical structures, significantly 
improving the accuracy and reliability of diagnosis and 
prognosis. Traditionally, these tasks are finished by 
physicians or medical physicists and lead to two major 
problems: (i) low efficiency; (ii) biased by personal 
experience. In the past decade, many machine learning 
methods have been applied to accelerate and automate 
the image analysis process. Compared to the enormous 
deployments of supervised and unsupervised learning 
models, attempts to use reinforcement learning in 
medical image analysis are scarce. This review article 
could serve as the stepping- stone for related research. 
Significance: From our observation, though 
reinforcement learning has gradually gained momentum 
in recent years, many researchers in the medical analysis 
field find it hard to understand and deploy in clinics. One 
cause is lacking well-organized review articles targeting 
readers lacking professional computer science 

backgrounds. Rather than providing a comprehensive 
list of all reinforcement learning models in medical 
image analysis, this paper may help the readers to learn 
how to formulate and solve their medical image analysis 
research as reinforcement learning problems. 
 

I. INTRODUCTION 
The purpose of medical image analysis is to mine and 
analyze valuable information from medical images by using 
digital image processing to assist doctors in making more 
accurate and reliable diagnoses and prognoses. According to 
different imaging principles, common imaging modalities 
can be categorized as CT, MR, Ultrasound, SPECT, PET, 
X-ray, OCT, and microscope. Medical image processing can 
also be classified according to specific processing tasks. 
Typical tasks include classification, segmentation, 
registration, and recognition. Figure 1 shows the range of 
our review article. 

 
Figure 1: Range of our review article. Blue box: covered image analysis tasks; green box: covered anatomical sites; yellow box: 

covered imaging modalities. 
 
With the development of imaging technology and the 
iterative update of imaging equipment, the time required for 
medical imaging is greatly shortened, and the resolution of 
imaging is also significantly improved. At the same time, 
the data volume of medical images has experienced an 
unprecedented surge, with the trend of high dimensionality. 

The traditional manual analysis of medical images by 
physicians became tedious and inefficient. More and more 
physicians are looking to automate this process by 
partnering with engineers. That’s how the combined medical 
imaging and machine learning field was born. Many excellent 
algorithms in the field of natural image analysis have also 
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shown good results in the field of medical images (Shen et 
al., 2017). 
Reinforcement learning (RL) is neither supervised 
learning nor unsupervised learning. The goal of 
reinforcement learning is to achieve the maximum 

expected cumulative reward (Sutton & Barto, 2018). 
Figure 2 shows the relationship between machine 
learning, supervised learning, unsupervised learning, 
reinforcement learning and deep learning. 

 
Figure 2: Relationship between machine learning, supervised learning, unsupervised learning and reinforcement learning. 

 
The number of published reinforcement learning-related 
papers has grown rapidly in the past two decades. State-of-
the-art RL models have been applied to solve problems that 
are difficult or infeasible with other machine learning 
approaches, such as playing video games (Mnih et al., 2013; 
Mnih et al., 2015; Silver et al., 2017), natural language 
processing (Sharma & Kaushik), and autonomous driving 
(Sallab et al., 2017). These RL methods have achieved 
outstanding performances. However, attempts to exploit the 
technical developments in RL in the medical analysis field 
are scarce. Figure 3 shows the trends of number of published 
machine learning papers and reinforcement learning papers 
in medical image analysis. Despite the overall growth trend, 
the number of published RL papers still only constitutes a 
tiny part of machine learning in medical image analysis. On 

the other hand, RL methods have unique advantages in 
dealing with medical image data: 
RL models can efficiently learn from limited annotation 
guided by supervised actions step by step, while medical data 
often lacks large-scale accessible annotation. 
RL models are less biased since they won’t inherit bias from 
the labels made by human annotators. 
RL-agents can learn from sequential data, and the learning 
process is goal- oriented. Besides exploiting experience, it 
can also explore new solutions. The RL can even surpass 
human experts when solving the same problem. 
 
The review article is based on Synthesis Methodology 
(Wilson & Anagnostopoulos, 2021). 

Figure 3: Trends of number of published machine learning papers and reinforcement learning papers in medical image analysis.  
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This figure is made by separately searching the keywords 
"Machine Learning AND (Medical Imaging OR (Medical 
Image Analysis))" and "Reinforcement learning AND 
(Medical Imaging OR (Medical Image Analysis))" in 
PubMed. The number of papers published each year is 
counted. 
Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) will be followed(Moher et al., 

2009). Firstly, the following pattern will be searched in 
Google Scholar and PubMed: Clustering AND (Medical OR 
CT OR MR OR Ultrasound OR X-ray OR OCT) AND 
IMAGE AND Segmentation. Then the duplicate papers will 
be removed. We set the qualified publication date to 2010. 
The remaining papers will go through qualitative synthesis 
and quantitative synthesis. The summary of the selection 
process is shown in Figure 4.  

 

 
Figure 4: Flows of information through the different phases of a systematic review. 

 
By reviewing content, analyzing common points and 
comparing difference of these papers, we hope that we can 
inspire our target readers to (i) have a better understanding of 
RF, (ii) learn how to formulate their research problems as RL 
problems. For the next two sections, we will first prepare the 
readers with basic knowledge of RL. Then we will show 
how to apply RL in different medical image analysis tasks. 
Those readers who have already been familiar with RL 
algorithms could directly go to the application section. 
 
1. Reinforcement Learning Basics 
In this subsection, we provide a list of terminologies that 

frequently appear in RL papers. Some terminologies 
may appear in definitions of other terminologies before 
they are defined. 

• Action (A): An action (a) is the way that an agent 
interacts with the environment. A includes all possible 
actions that an agent could perform. 

• Agent: Agents are the models we attempt to build that 
interact with the environment and take actions. 

• Environment: The content that the agent is interacting 
with is called the environment. While providing feedback 
after the agent takes action, the environment itself is also 
changing. 

• State (S): A state (s) is a frame of an environment. S 
includes all states that an agent will go through. 

• Reward (R): A positive reward (r) means an increase 
possibility of achieving the goal, while a negative reward 
means the decreased possibility. R includes all the 
possible reward values the environment may feed back to 
the agent. 

• Episode: If an agent has gone through all the states from 
the initial state to the terminal state, we say this agent has 
finished the episode. 

• Transition probability 𝑃𝑃(𝑠𝑠′|𝑠𝑠, 𝑎𝑎): P(s′|s, a) is the 
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possibility of transiting to transiting to state s′ to from the 
current state s, taking the action a. 

• Policy 𝜋𝜋(𝑎𝑎|𝑠𝑠): The policy instructs the agent to choose 
among actions A under the current state. 

• Return (G): The return is the cumulative discounted future 
reward. 

• 𝐺𝐺𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝛾𝛾𝑟𝑟𝑡𝑡+1 + 𝛾𝛾2𝑟𝑟𝑡𝑡+2, where t is the time and γ is 
the discount factor. 

• State value 𝑉𝑉𝜋𝜋(𝑠𝑠): The expected amount of return from 
current state. 

• 𝑉𝑉𝜋𝜋(𝑠𝑠) = 𝐸𝐸[𝐺𝐺𝑡𝑡|𝑠𝑠𝑡𝑡 = 𝑠𝑠], where E is the expectation. 

• Action value 𝑄𝑄𝜋𝜋(𝑠𝑠, 𝑎𝑎) (Q value): The expected amount of 
return from current state, taking action s. 𝑄𝑄𝜋𝜋(𝑠𝑠, 𝑎𝑎) = 
𝐸𝐸[𝐺𝐺𝑡𝑡|𝑠𝑠𝑡𝑡 = 𝑠𝑠, 𝑎𝑎𝑡𝑡 = 𝑎𝑎] 

• Optimal action value: 𝑄𝑄⋆(𝑠𝑠, 𝑎𝑎): Q⋆(s, a) = 𝑚𝑚𝑎𝑎𝑚𝑚 𝑄𝑄𝜋𝜋(𝑠𝑠𝑡𝑡, 
𝑎𝑎𝑡𝑡) 

𝜋𝜋 
• Agent environment interaction: Figure 5 shows how the 

agent is interaction with the environment. 

 

 
Figure 5: Agent Environment Interaction. Adapted from (Rafati & Noelle, 2019). 

 
With the development of the RL theory, numerous 
algorithms have been created. Benefiting from the 
combination with deep learning, RL is now capable of 
handling more and more complex scenarios in modern 
applications. But no matter how complex these state-of-the-
art algorithms are, they can be mainly divided into two 
categories: model- based RL and model-free RL. As its 
name indicates, model-based RL attempts to explain the 
environment and create a model to simulate it. Model-free 
RL, however, will only update its policy by interacting with 
the environment and observing the rewards. 
We can further divide the model-free RLs into policy-based 

and value-based according to whether the algorithm is 
optimizing the value function or policy. Value-based RLs are 
widely applied for discrete action space problems, while 
policy-based RLs are suitable for both discrete and 
continuous action space. Some RL algorithms are based on 
both the value and policy, like DDPG (Lillicrap et al., 2015), 
TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018). 
Figure 6 shows the taxonomy of popular RL algorithms. In 
our review, all the RL models are model-free, and the mostly 
used algorithms are DQN, DDQN, A2C, and DDPG. Below 
we include brief introductions of these RL algorithms 
commonly used in medical image analysis. 

 

Figure 6: Reinforcement learning algorithms taxonomy. 
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𝑖𝑖 

DQN 
The Deep Q-Network (DQN) was first proposed by (Mnih et 
al., 2013; Mnih et al., 2015) to solve some complex computer 
perception vision problems. It combined the idea of the 
traditional Q learning method (Watkins, 1989) and the deep 
CNN (Krizhevsky et al.). The motivation of DQN is to solve 
the problem that the Q-table can only store a limited number 
of states, while in real-life scenarios, there could be an 
immense or even infinite number of states. DQN adopts the 
experience replay mechanism that randomly samples a 

small batch of tuples from the replay buffers during the 
training process. The correlations between the samples are 
significantly reduced, leading to better algorithm 
robustness. Another improvement, compared to Q learning, 
is that DQN uses a deep CNN to represent the current Q 
function and uses another network to define the target Q 
value. The introduction of the target Q value network 
reduced the correlation between the current and target Q 
values. Figure 7 shows the workflow of the DQN. 

 
Figure 7: Workflow of DQN algorithm. 

 
DDQN 
DQN is one of the most popular RL algorithms applied in 
medical image analysis. How- ever, the optimization target 
in DQN is represented as 𝑟𝑟 + 𝛾𝛾 max 𝑄𝑄(𝑠𝑠′, 𝑎𝑎′|𝜃𝜃−). The 
selection and evaluation of actions are all based on the 
network’s same parameter, leading to over- estimation of 
the Q value. The Double DQN (DDQN), which (Van 
Hasselt et al.) first proposed, used two separate networks for 
selection and evaluation. Here the target Q value is written 
as 𝑟𝑟 + 𝛾𝛾𝑄𝑄(𝑠𝑠′, argmax better more stable learned policy than 
DQN. 
 

𝑄𝑄(𝑠𝑠′, 𝑎𝑎|𝜃𝜃𝑖𝑖), 𝜃𝜃−), which achieved 
 
2. RL in Medical Image Analysis 
Medical Image Detection 
Anatomical landmarks are biological coordinates that can be 
reallocated repeatedly and precisely on images produced by 
different imaging modalities — computed tomography 
(CT), ultrasound (US), magnetic resonance imaging (MRI). 
The accurate detection of anatomical landmarks is the 
ground for further medical image analysis tasks. Figure 8 is 
an example of vocal tract landmarks from the MRI image. 

 
Figure 8: Vocal tract landmarks from MRI image Courtesy of (Eslami et al., 2020). 

 

𝑎𝑎 
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Many automatic algorithms for anatomical landmark 
detection have existed long before the attempts of using RL 
models. However, landmark detection, especially 3D 
landmarks detection, could be challenging and cause the 
failure of these algorithms (Ghesu et al., 2019). Moreover, 
the computation of features and hyper-parameters selection 
of the system may not be optimal since the involvement of 
human decisions. The researchers attempted a different 
paradigm to address this problem - translate the landmark 
detection tasks as reinforcement learning problems which is 
the common goal of the papers we reviewed. While most 
essential and tricky task in these papers, as you can see later, 
is designing the state space, action space, and reward space 
before training the models. 
 
(Ghesu et al., 2016) is one of the very first papers that 
attempted to use RL for anatomical landmark detection. In 
an image I, �⃗⃗⃗�𝑝�⃗⃗⃗�𝐺𝑇𝑇→ denotes the location of anatomical 
landmark, and �⃗⃗⃗�𝑝𝑡𝑡→ denotes the location at the current time. 
State space S is the collection of all possible states 𝑠𝑠𝑡𝑡  = 
𝐼𝐼(�⃗⃗⃗�𝑝𝑡𝑡→). Action space A is the collection of all possible 

actions by which the agent can move to the adjacent 
position, as illustrated by 
 
Figure 9. Reward space R is defined as ||�⃗⃗⃗�𝑝𝑡𝑡→ − �⃗⃗⃗�𝑝�⃗⃗⃗�𝐺𝑇𝑇→||2 − ||�⃗⃗⃗�𝑝�⃗⃗�𝑡+⃗⃗⃗1→ 
− �⃗⃗⃗�𝑝�⃗⃗⃗�𝐺𝑇𝑇→|| which impels the agent to move closer to the target 
anatomical landmark. A deep learning model was applied to 
approximate the state value function. The parameters are 
updated according to gradient descent, and the error function 
is: 
θ  = arg min 𝐸𝐸 
 
𝘍𝘍 [(𝑦𝑦 − 𝑄𝑄(𝑠𝑠, 𝑎𝑎; 𝜃𝜃 )) ] + 𝐸𝐸 
[𝑉𝑉 𝘍𝘍 (𝑦𝑦)]    (1) 
 
𝑠𝑠,𝑎𝑎,𝑟𝑟,𝑠𝑠𝑖𝑖 𝑠𝑠,𝑎𝑎,𝑟𝑟 𝑠𝑠 
 
This deep Q learning-based method beat the existing top 
systems not only in accuracy but also in speed. The design of 
action, state, and reward spaces in the paper we just discussed 
became a standard method. 

 
Figure 9: Possible actions of a 3D landmarks detection task. Courtesy of (Ghesu et al., 2019). 

 
However, the approach mentioned above is still 
preliminary. One of the biggest disadvantages is that it could 
not fully use the information at different scale. So a multi-
scale deep reinforcement learning method was soon proposed 
in (Ghesu et al., 2019). The search for the landmark started 
from the coarsest scale. Once the search is convergent, the 
continued work would be started at a finer scale until the 
search meets the finest scale’s convergence criteria. Figure 
10 illustrates this non-trivial search process. Where 𝐿𝐿𝑑𝑑 is the 
scale level in the continuous scale-space L, which can be 
calculated as: 
 
𝐿𝐿𝑑𝑑(𝑡𝑡) = ψρ(σ(𝑡𝑡 − 1) ∗ 𝐿𝐿𝑑𝑑(𝑡𝑡 − 1)) (2)  
 
Where ψρ is the signal operator, and σ is the Gaussian-like 

smoothing function. 
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Figure 10: The trajectory of search the anatomical landmark across images of multiple scale-levels. Courtesy of (Ghesu et al., 

2019). 
 
 
(Alansary et al., 2019) extended the work of Ghesu et al. by 
evaluating different types of RL agents. He compared the 
detection results of using DQN, double DQN (DDQN), 
Double DQN, and duel double DQN (duel DDQN) on three 
different-modalities dataset — fetal US, cardiac MRI, and 
brain MRI. 
Rather than detecting a landmark per agent separately, bold 
attempts have been made by (Vlontzos et al., 2019) to detect 
multiple landmarks with multiple collaboration agents. With 
the assumption that the anatomical landmarks have inner 
correlations with each other, the detection of one landmark 
could indicate the location of some other landmarks. For the 
action function approximator in this paper, the collaborative 
deep Q network (Collab-DQN) was proposed. The weights 
of the convolutional layers are shared by all the agents, while 
the fully connected layers for deciding the actions are trained 
separately per agent. Compared to the methods that trained 
agents for different landmarks differently, this multi-agent 
approach reduced 50% detection error using a shorter 
training time. 
Some other contributions to the RL for anatomical 
landmarks detection include: estimating the uncertainty of 
reinforcement learning agent (Browning et al., 2021), 
reducing the needed time to reach the landmark by using a 
continuous action space (Kasseroller et al., 2021), 
localization of modality invariant landmark (Winkel et al., 
2020). 
 
Lesion Detection 
Object detection, also called object extraction, is the process 
of finding out the class labels and locations of target objects in 
images or videos. It is one of the primary tasks in medical 

image analysis (Li et al., 2019). An exemplary detection 
result can be used as the basis to improve the performance 
of further tasks like segmentation. 
The mainstream approaches for lesion detection nowadays 
still rely on exhaustive search methods that cost a lot of time 
and deep learning methods that require a large amount of 
labeled data. Facing the current challenges and inspired by 
similar problems in landmarks detection (Ghesu et al., 
2016), (Maicas et al., 2017) implemented a deep Q-network 
(DQN) agent for active breast lesion detection. The states are 
defined as current bounding box volumes of the 3D DCE-
MR images. The reinforcement learning agent could 
gradually learn the policy to choose among actions to 
transit, scale the bounding box, and finally localize the 
breast lesion. Specifically, the action set consists of 9 
actions that can translate the bounding box forward or 
backward along the x, y, z-axis, scale up or scale down the 
bounding box, and trigger the terminal state. To further 
evaluate the effectiveness of applying reinforcement 
learning on lesion detection with limited data, using DQN as 
the agent to localize brain tumors with very small training 
data was attempted by (Stember & Shalu, 2020), (Stember & 
Shalu, 2021a).Different from (Maicas et al., 2017), the brain 
MR data are 2D slices. The environment is defined as the 
2D slices overlaid with gaze plots viewed by the radiologist. 
Instead of using the bounding box, the states are the gaze 
plots the agent located. Three actions - moving anterograde, 
not moving, moving retrograde would help the agent 
transfer to the next state. If the agent moves toward the 
lesion, it will receive a positive reward, otherwise a negative 
one. If the agent stays still, it will receive a relatively large 
positive reward within the lesion area or a rather large 
penalization otherwise. The experiment results showed that 
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reinforcement learning models could work as robust lesion 
detectors with limited training data, reduce time 
consumption, and provide some interpretability. 
Also addressing the lack of labeled training data, (Pesce et 
al., 2019) exploited visual attention mechanisms to learn 
from a combination of weakly labeled images (only class 
label) and a limited number of fully annotated X-ray images. 
This paper proposed convolutional networks with attention 
feedback (CONAF) architecture and a recurrent attention 
model with annotation feedback (RAMAF) architecture. 
The RAMAF model can only observe one part of the image, 
which is defined as a state at a glimpse. The reinforcement 
learning agent needs to learn the policy to take a sequence of 
glimpses and finally locate the lesion site within the shortest 
time. Each glimpse consists of two image patches sharing 
the same central point, and the length of the glimpse 
sequence is fixed to be 7. The rewards will be decided 
according to (i) if the image is classified correctly; (ii) if the 
central point of a glimpse is within the labeled bounding 
box. RAMAF achieved a localization performance of 
detecting 82% of overall bounding boxes with a much 
faster detection speed than other state-of-the-art methods. 
More than detecting lesions in static medical images (2D or 
3D), the reinforcement- learning-based system can also 
track the lesions frame by frame continuously. (Luo et al., 
2019) proposed a robust RL- based framework to detect and 
track plaque in Intravascular Optical Coherence 
Tomography (IVOCT) images. Despite the pollution 
problem of speckle- noise, blurred plaque edges, and diverse 
intravascular morphology, the proposed method achieved 
accurate tracking and has strong expansibility. 
Three different modules are included in the proposed 
framework. The features are extracted and encoded first by 
the encoding feature module. Then the information of scale 
and location of the lesion is provided by the localization and 
identification module. Another function of this module is 
preventing over- tracking. The most important module is the 
spatial- temporal correlation RL module. Nine different 
actions are different, including eight transformation actions 
and one stop action. The state S is defined as three- tuples: 𝑆𝑆 
= (𝐸𝐸, 𝐻𝐻𝐿𝐿, 𝐻𝐻𝐻𝐻). Here, the E represents the encoded output 
features from the FC1 layer. HL is the collection of recent 
locations and scales. HA represents the recent ten sets of 
actions. 8000 IVOCT images were used to evaluate the 
framework. With a strict standard (IOU > 0.9), the RL 
module could improve the performance of plaque tracking 
both frame-level and plaque-level. 
 
Organ/ Anatomical Structure Detection 
Besides detecting lesions, reinforcement learning can also 
be applied in organ detection. (Navarro et al., 2020) 
designed a deep Q-learning agent to locate various organs in 
3D CT scans. The state is defined as voxel values within the 
current 3D bounding box. Eleven actions, including six 
translation actions, two zooming actions, and three scaling 

actions, make sure that the bounding box can move to any 
part of the 3D scan. The agent is rewarded if an action 
improves the intersection over union score (IOU). Seventy 
scans were used for training, and 20 scans were used for 
testing on seven different organs: pancreas, spleen, liver, lung 
(left and right), and kidney (left and right). This proposed 
method achieved a much faster speed than the region 
proposal and the exhaustive search methods and led to an 
overall IOU score of 0.63. 
(Zhang et al., 2021) managed to detect and segment the 
vertebral body (VB) simultaneously. The sequence 
correlation of the VB is learned by a soft actor-critic (SAC) 
RL agent to reduce the background interference. The 
proposed framework consists of three modules: Sequential 
Conditional Reinforcement Learning network (SCRL), FC- 
ResNet, and Y-net. The SCRL learns the correlation and 
gives the attention region. The FC-ResNet extracts the low-
level and high-level features to determine a more precise 
bounding box according to the attention region. At the same 
time, the segmentation result is provided by the Y-net. The 
state of the RL agent is determined by a combination of the 
image patch, feature map, and region mask. And the reward is 
designed according to the change of attention-focusing 
accuracy to elicit the agent to achieve a better detection 
performance. This proposed approach accomplished an 
average of 92.3% IOU on VB detection and an average of 
91.4% Dice on VB segmentation. 
The research of (Zheng et al., 2021) was the first attempt to 
use the multi-agent RL in prostate detection. Two DQN 
agents locate the lower-left and upper-right corners of the 
bounding box while sharing knowledge according to the 
communication protocol (Foerster et al., 2016). The final 
location of the prostate is searched with a coarse-to-fine 
strategy to speed up the search process and improve the 
detection accuracy. In more detail, the agents first search on 
the coarsest scale to draw a big bounding box and gradually 
move to a finer scale to generate a smaller and more accurate 
bounding box to detect the prostate. Compared to the single-
agent strategy (63.15%), this multi-agent framework 
achieved a better average score of 80.07% in IOU. 
 
Assessment 
Detection is a type of problem that straightforwardly can be 
formulated as the control or path-finding problem. Generally 
speaking, the states are defined as the pixel values that the 
agents observe at the current step, and the actions are defined 
as movements along the different axis of the environment 
plus some scaling factors. That is why agent-based detection 
has the most considerable number of papers among all RL- 
related image detection tasks. Though related work in this 
field is still growing, some challenges exist. 
Firstly, the generalizability and reproducibility of the agent-
based methods still need to be further investigated. In 
practical application, the quality and local features of the 
image may vary by the noise and distortion introduced in the 



International Journal of Engineering Applied Sciences and Technology, 2024 
Vol. 8, Issue 10, ISSN No. 2455-2143, Pages 139-149 

Published Online February 2024 in IJEAST (http://www.ijeast.com) 
 

147 

imaging process. The trained agent may not always be 
capable of finding the target in clinical settings. 
Furthermore, the trigger of the termination state in the 
inference stage needs to be improved. The most commonly 
used criteria adopted now is the happening of oscillation. 
However, this may lead to a very ineffective convergence, 
and the agent might even be trapped at some local optimal 
point and never reach the actual destination. Real-time 
detection is another direction that has caused more interest in 
recent years. RL has proved its fast detection capability due 
to the non-exhaustive searching strategy. However, in some 
high dimensional data, 4D images (3D plus temporal), for 
example, the real- time detection and tracking still need 
more investigation. The last point is that the training process 
of the RL system, especially the multi-agent system, is very 
time-consuming, which may take days to weeks to train on 
even the best hardware platforms, let along the hyper 
parameter-tunning is also highly relied on the designer’s 
experience. A summary of the works we reviewed in this 
section is given in Table 1. 
 
Medical Image Segmentation 
The key idea is to formulate this segmentation task as a 
control task by a simple Q-learning agent that decides the 
optimal local thresholds and the post-processing parameters. 
The quality of the segmentation is considered when 
designing the state. The segmentation threshold and size of 
the structuring elements are changed by taking a series of 
actions. Though simple as this initial research, the 
segmentation quality was acceptable while significantly 
reducing the required human interaction compared to the 
mainstream methods like active contour at that time. 
 
 
 

Pre-locate the Segmentation Region 
Most supervised-learning-based catheter segmentation 
methods require a large amount of well- annotated data. 
(Yang et al., 2020) proposed a semi-supervised pipeline 
shown in Figure 11 that first uses a DQN agent to allocate 
the coarse location of the catheter and then conducts patch-
based segmentation by Dual-UNet. The RL agent reduced the 
need for voxel-level annotation in the pre-allocation stage. 
The semi- supervised Dual-UNet exploited plenty of 
unlabeled images according to prediction hybrid constraints, 
thus improving the segmentation performance. The states 
are defined as the 3D observation patches, and the agent can 
update the states by moving the patch center point (x, y, z) 
along the x, y, and z-axis of the observation space. Like the 
landmark detection problems, the agent would give a 
negative reward if the patch moves away from the target; 
otherwise, a positive reward for moving toward and no 
reward if standing still. Compared to the state-of-the-art 
methods, this proposed pipeline requires much less 
computation time and achieves a minimum of 4% 
segmentation performance improvement measured by Dice 
Score. 
 
Hyper parameters optimization 
Instead of directly involved in the segmentation process, RL 
agents can also be applied to optimize the existing medical 
image segmentation pipelines (Bae et al., 2019; Qin et al., 
2020; Yang et al., 2019). (Bae et al., 2019) used RL as the 
controller to automate the searching process of optimal 
neural architecture. The required search time and the 
computation power are significantly reduced by sharing the 
parameters while adopting a macro search strategy. Tested 
on the medical segmentation decathlon challenge, the 
authors assert that this optimized architecture outperformed 
the most advanced manually searched architectures. 

 

 
Figure 11: The semi-supervised DQN-driven catheter segmentation framework. Courtesy of (Yang et al., 2020). 
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Realizing the problem that some randomly augmented 
images might sometimes even harm the final segmentation 
performance, (Qin et al., 2020) implemented an automated 
end-to-end augmentation pipeline using Dual DQN (DDQN) 
agent. By making the trails and saving the experiences, the 
agent would learn to determine the augmentation operations 
beneficial to the segmentation performance according to the 
fed- back Dice ratio. Twelve different basic actions would 
change the state to achieve augmentation. The state is 
defined as the extracted feature from U-Net. It is interesting 
to observe that horizontal flipping and cropping are two of 
the most useful operation. 
(Yang et al., 2019) from NVIDIA integrated the highlights 
of the previous two reviewed papers. With an RNN-based 
controller, this research automates the design process of 
hyper- parameters and image augmentation to explore the 
maximum potential of the state-of-the- art models. The 
optimal policy is learned using the proximal policy 
optimization to decide the training parameters. Tested on the 
medical decathlon challenge tasks, the RL searched model 
and augmentation parameters have shown remarkable 
effectiveness and efficiency. 
 
Segmentation as a Dynamic Process 
Observing that many existing automated segmentation 
pipelines may often fail in real clinical applications, (Liao et 
al., 2020) implemented multi-agent reinforcement learning 
to interact with the users that can achieve an iteratively 
refined segmentation performance. This multi- agent 
strategy captures the dependence of the refinement steps and 
emphasizes the uncertainty of binary segmentation results in 
states𝑡𝑡 indicates the current step. The actions will change 
the segmentation probability by an amount 𝑎𝑎 ∈ 𝐻𝐻, where 𝐻𝐻 
is the action set. Furthermore, the voxel-wise reward is 
defined as 𝑟𝑟(𝑡𝑡) = 𝜒𝜒(𝑡𝑡−1) − 𝜒𝜒(𝑡𝑡), where 𝜒𝜒 is the cross entropy 
between the label 𝑦𝑦𝑖𝑖 probability 𝑝𝑝𝑖𝑖, to refine the 
segmentation more efficiently. The refined final 
segmentation result outperformed Min- Cut (Boykov & 
Kolmogorov, 2004), DeepGeoS(R- Net) (Wang et al., 
2018), and Inter CNN (Bredell et al., 2018) on all the 
BRATS20015, MM- WHS, NCI- ICBI2013 datasets. 
Though published earlier than the (Liao et al., 2020) and 
adopted the older RL method to learn the policy, (Wang et 
al., 2013) incorporated not only the user’s background 
knowledge but also their intentions. The proposed 
framework follows a “Show-Learn- Act” workflow, which 
reduces the required interactions while achieving context-
specific and user-specific segmentation. 
 
Assessment 
Tackling the image segmentation problems using RL agents 
provides us with an effective way to further optimize existing 
pipelines, overcome a limited number of training data, and 
interact with users to incorporate prior knowledge. Despite 

the novices of these methods, limitations still exist. The 
various definitions of states and actions may significantly 
influence the precision of the segmentation. In most works, 
the states are updated by a series of limited-number discrete 
actions to determine the final segmentation contours. 
Another problem is that the state design makes the agent 
only observe local or global information at a step. It would 
be interesting to see some methods in the future that can 
enable the agent to make these two pieces of information 
observable to the agent at the same time. A summary of the 
works we reviewed in this section is given in Table 2. 
 

II. CONCLUSIONS 
In this work, we have witnessed the success of some 
researchers' work that ingeniously turn the traditional image 
analysis tasks into RL-style behavioral or control problems. 
The basic concepts of reinforcement learning are first 
recapped, and a comprehensive analysis of applications of 
RL agents for different medical image analysis tasks was 
conducted in different sections. Under each section, the 
formulations of RL problems are discussed in detail from 
different angles. As the essential elements of the RL systems, 
the choice of algorithms, state, actions, and reward are 
highlighted in the table in Appendix 
A. These RL-based methods provide us a way to think of 
the problems and create new paradigms for solving current 
obstacles. We hope that readers can find commonalities 
from these works, further understand the principles of 
reinforcement learning, and try to apply reinforcement 
learning in their future research. 
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